Journal of Organometallic Chemistry, 414 (1991) 271–283 Elsevier Sequoia S.A., Lausanne JOM 21910

Diorganoindiumfluoride. Die Kristallstrukturen von $[^{i}Pr_{2}In(THF)_{2}][BF_{4}]$ und $(MesBO)_{3}$

Bernhard Neumüller * und Frank Gahlmann

Fachbereich Chemie der Universität Marburg, Hans-Meerwein-Straße, W-3550 Marburg (Deutschland) (Eingegangen den 18. Februar 1991)

Abstract

The reaction of $In(CH_2Ph)_3$ and $InMes_3$ with $BF_3 \cdot OEt_2$ forms the corresponding monofluorides $(PhCH_2)_2InF(1)$ and $Mes_2InF(2)$, while $[{}^{i}Pr_2In][BF_4](3)$ is precipitating, when $BF_3 \cdot OEt_2$ is given to a solution of $In({}^{i}Pr)_3$ in ether. 3 can be recrystallized from an Et_2O-THF -mixture as colorless needles of $[{}^{i}Pr_2In(THF)_2][BF_4](4)$. An X-ray structure determination of 4 shows $[{}^{i}Pr_2In(THF)_2]^+$ -ions, bridged by $[BF_4]^-$ -ions, forming infinite chains of cations and anions. During the reaction to $Mes_2InF(2)$, $(MesBo)_3$ (5) was formed. An X-ray structure determination of 5 shows the basic six-membered B-O-ring in it to be almost planar.

Zusammenfassung

Die Umsetzung von $In(CH_2Ph)_3$ und $InMes_3$ mit $BF_3 \cdot OEt_2$ führt zu den entsprechenden Monofluoriden $(PhCH_2)_2InF$ (1) und Mes_2InF (2). Im Gegensatz dazu liefert die Reaktion von $In({}^iPr)_3$ mit $BF_3 \cdot OEt_2$ in Diethylether $[{}^iPr_2In][BF_4]$ (3). 3 kann aus Et_2O/THF umkristallisiert werden und fällt dann in Form farbloser Nadeln als $[{}^iPr_2In(THF)_2][BF_4]$ (4) an. Eine Röntgenstrukturanalyse von 4 zeigt $[{}^iPr_2In(THF)_2]^+$ -Ionen, die über $[BF_4]^-$ -Ionen so verbrückt sind, daß unendliche Ketten aus Kationen und Anionen gebildet werden. Bei der Reaktion zu Mes_2InF (2) wird zusätzlich die Bildung von (MesBO)₃ (5) beobachtet. Wie aus der Röntgenstrukturanalyse von 5 folgt, besitzt das Boroxin 5 einen nahezu planaren sechsgliedrigen B-O-Ring.

Einleitung

Von den Diorganomonofluoriden des Galliums und des Indiums waren unseres Wissens bisher nur Me_2MF und Et_2MF (M = Ga, In) [1-7] bekannt. Wir waren besonders an Vertretern dieser Substanzklasse mit sterisch anspruchsvollen Resten interessiert, da diese uns für die beabsichtigten Folgereaktionen z.B. Metall-Metall-Bindungsknüpfungen besser geeignet erschienen.

In der Literatur werden hauptsächlich zwei Darstellungsvarianten aufgeführt: Die Umsetzung von Gallanen und Indanen mit 1. Bortrifluorid-Etherat [2,4,5,7] und 2. Triorganozinnfluoriden [2,4,6,7].

In dieser Arbeit berichten wir über Reaktionen von Indanen nach der ersten Variante.

271

Verbindung	m/z	rel. Int (%)	Fragment
1	241	5.31	$[M - 3H]^+$
	182	69.44	[PhCH ₂ CH ₂ Ph] ⁺
	115	14.28	[In] ⁺
	91	100	[CH ₂ Ph] ⁺
2	995	0.91	$[\ln_3 Mes_5 F_3 - 2H]^+$
	897	0.21	$[In_3Mes_4F_4]^+$
	743	0.54	$[In_2 Mes_4 F_2 - H]^+$
	625	58.65	$[\ln_{2}Mes_{3}F_{2}]^{+}$
	353	100	[InMes ₂] ⁺
	253	12.08	[InMesF] ⁺
	115	55.68	[In] ⁺

Auszug aus den EI-Massenspektren von 1 und 2

Synthese von (PhCH₂)₂InF (1) und Mes₂InF (2)

Werden die Indane $In(CH_2Ph)_3$ [8,9] und $InMes_3$ [10] nach Gl. 1 mit $BF_3 \cdot Et_2O$ bei Zimmertemperatur in Diethylether versetzt, bilden sich spontan die entsprechenden Monofluoride.

$$3 \operatorname{InR}_{3} + BF_{3} \cdot OEt_{2} \xrightarrow{\operatorname{Et}_{2}O; R.T.} 3 R_{2}\operatorname{InF} + BR_{3} + OEt_{2}$$
(1)
(1, 2)

 $(R = CH_2 Ph (1), Mes (Mes = 2,4,6-Trimethylphenyl) (2))$

Bei 1 und 2 handelt es sich um farblose, hydrolyseempfindliche Festkörper, die in Toluol oder Et₂O mittlere bis gute Löslichkeit zeigen. Gute Löslichkeit wird generell in stark polaren Donorlösungsmitteln wie THF beobachtet. Die Ergebnisse kryoskopischer Molekulargewichtsbestimmungen in Benzol, verknüpft mit Daten von NMR- bzw. IR- und RE-Spektren, lassen Rückschlüsse auf die Struktur von 1 und 2 in Lösung und im festen Zustand zu. In Lösung liegen 1 und 2 nach den Molmassenbestimmungen dimer vor. Die EI-Massenspektren von 1 und 2 (vgl. Tabelle 1) zeigen als massereichstes Fragment für 1 ein monomeres Bruchstück, während bei 2 ein trimeres Bruchstück mit allerdings schwacher Intensität die höchste Masse darstellt. In den ¹H- und ¹³C-NMR-Spektren von 1 und 2 werden jeweils die Signale von nur einer Verbindung beobachtet. Dabei unterscheiden sich die Werte von denen der Monochloride (PhCH₂)₂InCl [8,9] und Mes₂InCl [10], sowie von denen der Indane In(CH₂Ph)₃ [8,9] und InMes₃ [10], nur unwesentlich. Die in den ¹⁹F-NMR-Spektren (C_6D_6) gemessenen chemischen Verschiebungen von -186.0 ppm (1) und -173.0 ppm (2) liegen im erwarteten Bereich. Wird 1 in CD₃CN gelöst, so zeigt das ¹⁹F-NMR-Spektrum aufgrund der Ausbildung von Komplexen des Typs $(PhCH_2)_2 InF \cdot (CD_3CN)_x$ ein Signal bei -162.8 ppm.

Im IR-Spektrum von 1 werden zwei Banden für die In-C-Valenzschwingungen gefunden (vgl. Tabelle 2; v_{as} 459, v_s 440 cm⁻¹); die entsprechenden RE-Emission liegt bei 437 cm⁻¹. Unter Berücksichtigung der breiten In-F-Bande bei 347 cm⁻¹ (IR) schlagen wir ein dimeres Molekül 1 mit C_i -Symmetrie im Festkörper vor. Für 2,

Tabelle 1

Verbindung	v(In-F)		v(In-C)		
	IR	RE	IR	RE	
1 *	347m, br	a	m _{as} 459s	а	
			m, 440m	437m	
2	385m, br	a	536m	545s	
3	c		m _{as} 519s	a	
			m, 474m	472s	

Tabelle 2 Wichtige IR- und RE-Daten der Verbindungen 1-3 (cm⁻¹)

^a Nicht beobachtet. ^b Strukturvorschlag: $\ln_2 F_2$ -Vierringgerüst mit C_i -Symmetrie. ^c 1000 (F_2), 764 (A_1), 519 (F_2) für [BF₄]⁻-Ion.

dessen In-F-Valenzschwingung bei 385 cm⁻¹ beobachtet wird, nehmen wir ebenfalls ein In₂F₂-Vierringgerüst an.

 $(R = CH_2Ph(1), C_i$ -Symmetrie; Mes (2))

Synthese und Charakterisierung von $[Pr_2In][BF_4]$ (3)

Wird $In({}^{i}Pr)_{3}$ mit $BF_{3} \cdot OEt_{2}$ in Diethylether versetzt, entsteht unabhängig von den Reaktionsbedingungen aus dem primär gebildeten ${}^{i}Pr_{2}InF$ das Salz $[{}^{i}Pr_{2}In][BF_{4}]$ (3).

$$3 \operatorname{In}({}^{i}\operatorname{Pr})_{3} + 4 \operatorname{BF}_{3} \cdot \operatorname{OEt}_{2} \xrightarrow{\operatorname{Et}_{2}\operatorname{O}} 3 \left[{}^{i}\operatorname{Pr}_{2}\operatorname{In} \right] [\operatorname{BF}_{4}] + B({}^{i}\operatorname{Pr})_{3} + \operatorname{Et}_{2}\operatorname{O}$$
(3)

Wird ein Unterschuß von $BF_3 \cdot OEt_2$ angeboten, kann nicht umgesetztes $In({}^{1}Pr)_3$ zurückgewonnen werden. 3 ist ein farbloser, sehr hydrolyseempfindlicher Feststoff, der in Toluol und Diethylether schwer, in THF aber gut löslich ist. Aus THF-Et₂O-Mischungen kann das THF-Adukt [${}^{1}Pr_2In(THF)_2$][BF₄] (4) in Form langer Nadeln isoliert werden. Im 1 H-NMR-Spektrum (CD₃CN) von 3 ist nur ein Multiplett bei 1.21 ppm zu beobachten, da die Signale der Methin- und Methylenprotonen zusammenfallen, während im 13 C-NMR-Spektrum zwei isolierte Resonanzen im für In-gebundenen i-Propylgruppen typischen Bereich [11,12] bei 28.0 (CH(CH₃)₂) und 21.9 ppm (CH(CH₃)₂) zu erkennen sind. Den 11 B- und 19 F-NMR-Spektren (THF) sind charakteristische Verschiebungen und Kopplungskonstanten [13] für das [BF₄]⁻-Ion zu entnehmen ($\delta(B) = -0.4$ ppm; $\delta(F) = -151.4$ ppm; ${}^{1}J(FB) = 1.3$ Hz).

Symmetrische und asymmetrische In-C-Valenzschwingungen liegen im IR-Spektrum im erwarteten Bereich (474, 519 cm⁻¹) [14,15]; im RE-Spektrum wird nur eine Emission bei 472 cm⁻¹ beobachtet. Eine Vorhersage des R-In-R-Winkels kann hier mangels struktureller Daten anderer ⁱPr₂InX-Verbindungen nicht getroffen werden, wie es im Fall der Me₂InX-Verbindungen gezeigt worden ist [14].

In-F1	264.6(4)	F1–In–O2	81.0(2)	
In-F2(a)	259.1(6)	O1–In–O2	79.6(2)	
In-O1	230.9(5)	F1-In-F2(a)	120.4(2)	
In-O2	241.6(5)	F2(a)-In-O1	79.0(2)	
In-C1	212.8(6)	F1-In-C1	85.9(2)	
C1-C11	152(1)	F2(a)-In-C1	84.5(2)	
C1-C12	152.3(8)	O1–In–C1	96.8(1)	
O1-C31	144.0(7)	O2-In-C1	98.1(2)	
C31-C32	148.7(9)	C1–In–C1'	160.3(4)	
C32-C32'	142.5(7)	In-F1-B	173.8(7)	
O2-C41	141.5(9)	In-F2(a)-B(a)	155.0(7)	
O2-C44	142(1)	In-C1-C11	113.5(5)	
C41-C42	146(1)	In-C1-C12	112.4(4)	
C42-C43	147(1)	C11-C1-C12	110.6(6)	
C43-C44	148(2)	F1-B-F2	108(1)	
B-F1	138(1)	F1-B-F3	110.3(7)	
B-F2	132(1)	F2-B-F3	108.4(7)	
B-F3	124(1)	F3-B-F3'	110.7(7)	

Auszewählte	Atomahstände	(nm) und	Bindungswinkel	10) in 4
Ausgewanne	Atomatistanue	(թույ այս	Dilluungswinker	•	/ III 🔫

Kristallstrukturanalyse von [ⁱPr₂In(THF)₂][BF₄] (4)

Tabelle 3 enthält die ausgewählten Atomabstände und Bindungswinkel von 4, Tabelle 4 einen Vergleich von Bindungslängen und -winkeln mit denen anderer Indium-organischer Verbindungen. Kristalldaten und Angaben zur Strukturlösung von 4 und 5 werden in Tabelle 5 wiedergegeben. Eine Auflistung der Atomkoor-

Tabelle 4

Vergleich von ausgewählten Atomabständen (pm) und Bindungswinkeln (°) in Indium-organischen Verbindungen

Verbindung	In–C	In–X		C-In-C	Lit.
4	212.8(6)	In-F:	264.6(4),	160.3(4)	
			259.1(6)		
		In-O:	230.9(5),		
			241.6(5)		
Me ₂ InBr	211.6(6)	In-Br:	310.5(0)	180	[14]
-	222.6(7)				
Me ₂ InCl	217.9(7)	In-Cl:	267.3(9),	167.3	[17]
-			294.5(6),		
			295.4(6),		
			345.0(9)		
Me ₂ InO(O)CMe	208(1)	In–O:	237.1(5),	152.2(6)	[18]
	211(1)		260.0(5)		
Et ₂ InO(S)CMe	214	In–O:	256,	a	[19]
			247		
		In-S:	263		
Et ₂ InO(O)CEt	222	In–O:	246,	126	[20]
			264		

^a Keine Angaben.

Tabelle 3

Tabelle 5

Daten zur Kristallstrukturanalyse von 4 und 5

Verbindung	4	5
Formel; Formelmasse	C ₁₄ H ₃₀ BF ₄ InO ₂ ; 432.01	C ₂₇ H ₃₃ B ₃ O ₃ ; 437.99
Kristallabmessungen	0.18×0.55×0.15 mm	$0.5 \times 0.5 \times 0.25$ mm
C	a = 1264.1(4) pm;	a = 888.9(2) pm;
	b = 1047.0(2) pm;	b = 1408.4(4) pm;
	c = 1441.5(4) pm	c = 1998.6(4) pm;
		$\beta = 101.38(2)^{\circ}$
Zellvolumen (pm ³)	1907.9(9) · 10 ⁶	2452.9(8) · 10 ⁶
Raumgruppe	orthorhombisch,	monoklin,
0 11	Pnma (Nr. 62 [35])	C2/c (Nr. 15 [35])
Z	4	4
$d_{\rm cont}$ (g/cm ³)	1,515	1.193
Meßtemperatur (K)	193	193
Meßgerät	CAD4-Vierkreisdiffraktometer of Graphitmonochromator	der Firma Enraf Nonius, Mo-K _α -Strahlung,
Korrekturen	Extinktionskorrektur	Extinktionskorrektur
μ (cm ⁻¹)	11.7	0.7
F(000)	880	936
Meßbereich	$4 \leq 2\theta \leq 50$	$4 \leq 2\theta \leq 50$
gemessener Bereich	$0 \leq h \leq 15; \ 0 \leq k \leq 12;$	$0 \leq h \leq 10; \ 0 \leq k \leq 16;$
des reziprosten. Paumes	- 47<4<47	- 23<:<22
Scanmodus; Scanbreite		
(+&35 % \$ }	w-9238; 3.9.°	w-662m; 1.5°
Symmetrieunabhängige Reflexe	1600	1893
Meßwerte mit $F_c > 3\sigma(F_c)$	1276	1475
Strukturlösung und	Patterson-Methode	Direkte Methoden
Verfeinerung	SHELXS-86; SHELX-76 [36]	
Restriktionen	Der Abstand C1-H1 wurde bei	
	96 pm festgehalten	
Anzahi der Parameter	197	224
R	0.057	0.076
$R_w \text{ mit } w = 1/\sigma^2(F_0)$	0.034	0.042
Maximale Restelektronen-		
dichte (e/pm ³ ·10 ⁶)	0.95	0.34

dinaten und Auslenkungsfaktoren enthält Tabelle 6. Figur 1 zeigt einen Ausschnitt aus ber 'keitenförmigen Antorbnung von 4. Das $\{{}^{1} \Im r_{2} Jn\}^{+}$ 50m wirb von ben D-Aumen zweier THF-Moleküle und zusätzlich von zwei F-Atomen aus zwei unterschiedlichen $\{BF_4\}^-$ -Einheiten koordiniert, was zusammen zu einer verzerrt oktaedrischen Koordinationssphäre am zentralen Metallatom führt. Die Bindungslänge In1-C1 ist mit 212.8(6) pm typisch für indiumorganische Verbindungen, wenngleich dieser Abstand aufgrund eines höheren Platzangebotes und eines höheren Akzeptorcharakters des Indiums zu Vergleichsverbindungen wie $[{}^{1}Pr_{2}InN(H){}^{1}Bu]_{2}$ (218.5(6) und 219.0(5) pm) [11] und $[{}^{1}Pr(Cl)InN(H){}^{1}Bu]_{2}$ (216.6(9) pm) [12] verkürzt ist (vgl. Tabelle 4). Beide Isopropylgruppen besetzen die axialen Positionen des Oktaeders, wobei ein C1-In-C1'-Winkel von 160.3(4)° gebildet wird. Die Donor-Akzeptor-Bindungen In1-O1 und In1-O2 (230.9(5) und 241.6(5) pm) sind relativ kurz, verglichen mit In-O-Längen in Indiumverbindungen, deren Koordinationszahl 5 oder 6 beträgt (237 bis 264 pm, siehe Tabelle 4). In dimeren Molekülen wie ('Bu₂InOEt₂) [16] werden dagegen sehr viel kürzere In-O-Bindungsabstände

Tabelle 6

Atom	x	у	Z	U _{eq}
In	0.19923(5)	0.25	0.13708(4)	3.36(2)
В	0.3962(9)	0.25	0.357(1)	5.8(2)
F1	0.3348(4)	0.25	0.2774(3)	6.4(2)
F2	0.4971(5)	0.25	0.3320(4)	16.1(2)
F3	0.3789(5)	0.1522(6)	0.4033(4)	20.1(2)
01	0.1340(4)	0.25	-0.0129(3)	3.8(2)
O2	0.3626(5)	0.25	0.0497(3)	4.5(2)
C1	0.1873(5)	0.049(6)	0.1598(3)	4.7(2)
C11	0.2844(8)	-0.0254(7)	0.1278(6)	10.2(2)
C12	0.1607(6)	0.0164(7)	0.2604(5)	6.5(2)
C31	0.0947(6)	0.1382(7)	-0.0604(5)	6.5(2)
C32	0.0646(8)	0.1817(7)	-0.1552(5)	13.7(2)
C41	0.3773(8)	0.25	-0.478(6)	8.6(2)
C42 *	0.488(1)	0.218(1)	-0.0672(8)	5.6(2)
C43 ^b	0.5415(9)	0.216(1)	0.0239(8)	6.3(2)
C44 *	0.4638(9)	0.265(3)	0.0919(7)	8.5(2)

Atomkoordinaten und isotrope äquivalente Auslenkungsfaktoren der Nichtwasserstoffatome (10^{-22} m^2) von 4 "

^a Weitere Einzelheiten zur Röntgenstrukturanalyse können beim Fachinformationszentrum Karlsruhe, Gesellschaft für wissenschaftlicht-technische Information mbH, W-7514 Eggenstein-Leopoldshafen 2, unter Angabe der Hinterlegungsnummer CSD-55261, der Autoren und des Zeitschriftenzitats angefordert werden.^b Besetzungsfaktoren alle 0.5.

gemessen (214.7(5) un 216.5(5) pm). Komplettiert wird die verzerrt oktaedrische Umgebung an 4 durch zwei lange Indium-Fluor-Kontaktabstände, an denen zwei $[BF_4]^-$ -Ionen beteiligt sind (In1-F1 264.6(4); In1-F2(a) 259.1(6) pm). Diese In-F-Kontakte kommen aufgrund überwiegend elektrostatischer Wechselwirkungen zustande, wenn die Winkel In1-F1-B1 und In1-F2(a)-B1(a) (173.8(7) und 155.0(7)°) dafür als Indikator herangezogen werden. Die Indium-Fluor-Kontakte

Fig. 1. SCHAKAL-Darstellung [38] eines Kettenausschnittes von 4.

)))

. | | |

i ,

.

Ebene ^{<i>a</i>}	Aton	ne, welch	e die Ebe	ene defin	ieren		zusätzl	iche Ato	me	
A	B 1	01	B2	02	B2'	01'	C1	C2	C2'	
	0	1	-1	0	-1	-1	0	-3	3	
В	C1	C11	C12	C13	C11′	C12′	B 1	B2	01	O 2
	0	-1	1	0	1	-1	0	78	78	0
С	C2	C21	C22	C23	C24	C25	B 1	B2	01	O 2
	2	-2	1	1	-1	0	- 55	8	- 58	79

Tabelle 7 Ausgezeichnete Ebenen und Abstände (pm) von diesen in 5

^a Winkel zwischen den Ebenen (°): A, B 41; A, C 36; C, B 66.

sind für die Ausbildung einer unendlichen Zick-Zack-Kette entlang [100] verantwortlich (vgl. Fig. 2).

Darstellung von (MesBO)₃ (5)

Die Synthese von 5 wurde erstmals 1958 erwähnt [21]. Später wurde aufgrund ebullioskopischer Molmassenbestimmungen eine dimere Struktur vorgeschlagen [22], gestützt auf Massenspektren dann eine trimere [23,29].

Wir beobachteten die Bildung von 5 bei der Darstellung von 2 als eine Nebenreaktion und vermuten, daß eine Etherspaltung die Ursache dafür ist. Da auch von anderer Seite über Etherspaltung durch Organoborhalogenide berichtet wurde [42], könnte die Spaltung durch intermediär gebildetes MesBF₂ ausgelöst werden. Die Bildung von Boroxinen wurde von uns nur beobachtet, wenn mesitylsubstituierte Indane und Gallane [43] eingesetzt wurden. Eine Hydrolyse von MesBF₂ durch Spuren von Wasser kann trotzdem nicht ausgeschlossen werden. Die gebildete Menge an 5 ist gering und kann, da das Boroxin in gut ausgebildeten Kristallen aus Et_2O -THF anfällt, durch Kristallisation abgetrennt werden.

Verbindung	B-O	B-C	Lit.	
$\overline{\mathrm{Mes}_{3}\mathrm{B}_{3}\mathrm{O}_{3}(5)}$	137.1(3)	154.4(4)		
505.0	139.0(4)	156.5(6)		
Ph ₃ B ₃ O ₃	138(1)	154.4(8)	[24]	
5.5.5	- 139.0(9)	154.3(9)		
	.,	153.5(8)		
$Et_3B_3O_3$	138.0(1)	156.5(1)	[25]	
5.5.5	138.7(1)			
$[Ph_3B_3O_3]_2$	135.0(9)	154.9(6)	[30]	
$[p-(H_3N)_3C_6H_4]_3$	- 144.4(6)	155.4(8)		
		162.0(7)		
[Ph 3 B 3 O 3] 2	135.5(9)	157(1)	[30]	
[N(CH ₂ CH ₂) ₃ N]	-146(1)	157.5(9)		
		163(1)		

Vergleich ausgewählter Atomabstände in Boroxinen (pm)

Tabelle 8

Kristallstrukturanalyse von (MesBO)₃ (5)

In Tabelle 7 werden Ausgleichsebenen von 5 aufgeführt; Tabelle 8 ziegt einen Überblick der B-O- und B-C-Bindungslängen in Boroxinen. Die Tabellen 9 und 10 enthalten ausgewählte Bindungswinkel und Atomabstände bzw. die Atomkoordina-

	omaostande (pin) în 5		
137.1(3)	B1-O1-B2	122.0(3)	
139.0(4)	B2-O2-B2'	123.1(3)	
137.8(4)	O1-B1-O1'	118.6(4)	
156.5(6)	O1-B2-O2	117.1(3)	
154.4(4)	O1-B2-C2	121.2(3)	
141.6(3)	O2-B2-C2	121.7(3)	
138.0(4)	C11-C1-B1	121.4(2)	
151.0(4)	C11-C1-C11'	117.1(3)	
138.2(4)	C21-C2-B2	121.8(3)	
150.1(6)	C25-C2-B2	120.3(3)	
141.7(4)	C1-C11-C12	120.1(3)	
138.7(4)	C11-C12-C13	122.9(3)	
150.8(4)	C12-C13-C12'	116.9(4)	
139.1(4)	C21-C2-C25	117.9(3)	
137.5(4)	C2-C21-C22	120.2(3)	
150.3(4)	C21-C22-C23	121.8(3)	
139.3(4)	C22C23C24	117.9(3)	
150.4(4)	C23-C24-C25	122.5(3)	
	C24-C25-C2	119.6(3)	
	137.1(3) 139.0(4) 137.8(4) 156.5(6) 154.4(4) 141.6(3) 138.0(4) 151.0(4) 138.2(4) 150.1(6) 141.7(4) 138.7(4) 150.8(4) 139.1(4) 137.5(4) 150.3(4) 139.3(4) 150.4(4)	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $

Ausgewählte Bindungswinkel (°) und Atomabstände (pm) in 5

Tabelle 10

Tabelle 9

Atomkoordinaten und isotrope äquivalente Auslenkungsfaktoren der Nichtwassenstoffatome (10^{-22} m^2) von 5

Atom	x	у	Z	U _{eq}
B1	0.5	0.4848(4)	0.25	2.8(1)
B2	0.4841(4)	0.3363(2)	0.1883(2)	3.1(1)
01	0.4868(2)	0.4351(1)	0.1900(1)	3.32(7)
02	0.5	0.2898(2)	0.25	3.5(1)
C1	0.5	0.5959(3)	0.25	2.5(1)
C11	0.6008(3)	0.6483(2)	0.3007(1)	2.7(1)
C12	0.5992(4)	0.7463(2)	0.2990(2)	3.2(1)
C13	0.5	0.7977(3)	0.25	3.0(1)
C14	0.7146(4)	0.5987(2)	0.3561(2)	4.1(1)
C15	0.5	0.9042(4)	0.25	4.9(1)
C2	0.4660(3)	0.2817(2)	0.1200(2)	2.7(1)
C21	0.5313(3)	0.3155(2)	0.0652(2)	2.8(1)
C22	0.5204(3)	0.2618(2)	0.0062(2)	3.2(1)
C23	0.4409(3)	0.1761(2)	-0.0025(2)	3.1(1)
C24	0.3725(3)	0.1452(2)	0.0497(2)	3.2(1)
C25	0.3835(3)	0.1952(2)	0.1107(1)	3.0(1)
C26	0.6168(4)	0.4085(2)	0.0682(2)	3.8(1)
C27	0.4282(4)	0.1186(3)	-0.0668(2)	4.9(1)
C28	0.3047(4)	0.1533(2)	0.1641(2)	4.5(1)

Fig. 3. SCHAKAL-Darstellung von 5.

ten und Auslenkungsfaktoren von 5. 5 kristallisiert aus Toluol oder Et_2O -THF bei -20 °C in Form großer rautenförmiger Kristalle. Figur 3 zeigt einen annähernd planaren B₃O₃-Sechsring (vgl. Tabelle 7). Die Abweichungen von der Planarität liegen in derselben Größenordnung wie beim (PhBO)₃ [24], während das (EtBO)₃ [25] D_{3h} -Symmetrie aufweist. Schon vor der Bestätigung durch Kristallstrukturanalysen wurde aus UV-Spektren von (PhBO)₃ auf einen planaren Bor-Sauerstoff-Sechsring geschlossen [31,32]. MO-Rechnungen ergaben für (PhBO)₃ eine geringe Aromatizität und eine π -Bindungsordnung, die etwa 60% der in Borazinen entspricht [33,34].

Die Atome B1, O2, C1, C13 und C15 in 5 sind auf einer zweizähligen Achse angeordnet. Alle drei Phenylringe (an B1, B2 und B2') sind im selben Drehsinn zur zentralen B_3O_3 -Einheit verdrillt (Winkel siehe Tabelle 7). Die B-O-Bindungen liegen mit 137.1(3) und 139.0(4) pm zwischen einer B-O-Einfachbindung und einer B-O-Doppelbindung (143 bzw. 121 pm [26-28]). Kohlenstoff-Bor-Abstände von 154.4(4) und 156.5(6) pm sind typisch für alkyl(aryl)substituierte Boroxine (vgl. Tabelle 8). Charakteristisch sind auch die B_3O_3 -Ringinnenwinkel an B1 (O1-B1-O1' 118.6(4)°) und B2 (O1-B2-O2 117.1(3)°) bzw. O1 (B1-O1-B2 122.0(3)°) und O2 (B2-O2-B2' 123.1(3)°), verglichen mit (PhBO)₃ (O-B-O 117.3(6)-118.8(6)°; B-O-B 121.3(5)-122.0(5)°) [24]. B··· O-Wechselwirkungen zwischen den einzelnen Molekülen von 5 können bei Analyse der Kristallstruktur (Fig. 4) ausgeschlossen werden. Die abschirmende Wirkung der sterisch anspruchsvollen Mesitylliganden läßt eine Stapelung, wie sie für (EtBO)₃ [25] beobachtet wurde, nicht zu.

Experimenteller Teil

Für die ¹H-, ¹³C-, ¹⁹F- und ¹¹B-NMR-Messungen standen folgende Geräte und Meßfrequenzen zur Verfügung: Bruker AC-300 (¹H: 300.134 MHz; ¹³C: 75.469

Fig. 4. Stereoskopische Darstellung der Kristallstruktur von 5. Durch Abbildung von zwei Molekülen mehr pro Elementarzelle wird ein besserer Eindruck der Packung erreicht.

MHz; ¹⁹F: 282.409 MHz; ¹¹B: 96.295 MHz. Standards sind TMS (¹H, ¹³C), CFCl₃ (¹⁹F) und BF₃ · OEt₂ (¹¹B), jeweils $\delta = 0$. Die IR- bzw. RE-Spektren wurden mit einem Bruker IFS-88 (CsI- und Polyethylenscheiben) bzw. Varian Cary 82 (Ar-Ionenlaser, Coherent Model 52; 514.5 nm) angefertigt. EI-Massenspektren wurden mit einem Varian CH 7a aufgenommen. Die für die Röntgenstrukturanalyse geeigneten Kristalle wurden auf die Spitze einer Glaskapillare bei einer Stickstoff-Gasstromtemperatur von -80 °C befestigt und daran die Zellkonstanten sowie die Reflexintensitäten bestimmt. Zur Darstellung von Bindungsabständen und -winkeln, Berechnung von U_{eq} und Zeichnung der Molekül- bzw. Kristallstruktur wurden die Programme PLATON [37], SCHAKAL [38] und ORTEP [39] verwendet. Die Durchführung aller Arbeiten geschah unter Argon. Reinigung und Trocknung der Lösungsmittel erfolgten nach gängigen Methoden [40]. InCl₃ [41], In(CH₂Ph)₃ [8,9] und InMes₃ [10] wurden nach bekannten Literaturvorschriften dargestellt.

Darstellung von (PhCH₂)₂InF (1)

Zu 1.74 g (4.5 mmol) $In(CH_2Ph)_3$ in 20 ml Et_2O werden während 60 min. 0.18 ml (1.5 mmol) $BF_3 \cdot OEt_2$ in 20 ml Et_2O bei Raumtemperatur langsam zugetropft. Im Verlauf der Reaktion fällt ein voluminöser, farbloser Niederschlag aus. Es wird 6 h nachgerührt, der Ether im Vakuum entfernt und der Feststoff mit 15 ml n-Pentan gewaschen. Der zurückbleibende Festkörper wird aus Toluol umkristallisiert und im Vakuum getrocknet. Das erhaltene mikrokristalline Pulver war bisher für eine Röntgenstrukturanalyse nicht geeignet.

Ausbeute: 1.03 g (73% d. Th.). Schmp. (geschlossenes Rohr, unter Ar): 152°C. ¹H-NMR (C₆D₆): δ 2.15 (s, CH₂Ph); 6.86–7.10 (m, Phenyl-H). ¹³C-NMR (C₆D₆): δ 27.1 (CH₂Ph); 142.2 (C¹-Phenyl); 129.0 (C^{2/6}-Phenyl); 128 (C^{3/5}-Phenyl); 124.0 (C⁴-Phenyl). ¹⁹F-NMR (C₆D₆): δ – 186.0. Molmasse (kryoskopisch in Benzol): 654 g/mol (c = 0.0179 M; N = 2.1). Wichtige Daten der MS-, IR- und RE-Spektren siehe Tabelle 1 und 2. Gef.: C, 47.03; H, 4.56; F, 6.21. C₁₄H₁₄FIn (316.08) ber.: C, 53.20; H, 4.46; F, 6.01%.

Darstellung von Mes₂InF (2)

Zu 1.92 g (4.1 mmol) $InMes_3$ in 20 ml Et_2O werden während 1 h bei Raumtemperatur 0.17 ml (1.4 mmol) $BF_3 \cdot OEt_2$ in 20 ml Et_2O langsam zugetropft. Im Verlauf der Reaktion fällt ein voluminöser, farbloser Niederschlag aus. Nach sechsstündigem Nachrühren wird der Ether im Vakuum entfernt, das Produkt mit 10 ml n-Pentan gewaschen und der zurückbleibende Festkörper aus Et_2O umkristallisiert. 2 kann in Form von langen, sehr dünnen Nadeln isoliert werden.

Ausbeute: 1.21 g (80% d. Th.). Schmp. (geschlossenes Rohr, unter Ar): 133– 135° C. ¹H-NMR (C₆D₆): δ 2.04 (s, C⁴-CH₃); 2.30 (s, C^{2/6}-CH₃); 6.57 (s, C^{3/5}-H). ¹³C-NMR (C₆D₆): δ 21.2 (C⁴-CH₃); 26.1 (C^{2/6}-CH₃); 148.5 (C¹-Phenyl); 144.6 (C^{2/6}-Phenyl); 138.3 (C⁴-Phenyl); 127.5 (C^{3/5}-Phenyl). ¹⁹F-NMR (C₆D₆): δ -173.0. Molmasse (kryoskopisch in Benzol): 722 g/mol (c = 0.0145 M; N = 1.94). Wichtige Daten der MS-, IR- und RE-Spektren siehe Tabelle 1 und 2. Gef.: C, 56.85; H, 6.10; F, 4.80. C₁₈H₂₂FIn (372.19) ber.: C, 58.09; H, 5.96; F, 5.10%.

Darstellung von $[Pr_2In][BF_4]$ (3)

Zu 1.78 g (7.3 mmol) $In({}^{i}Pr)_{3}$ in 20 ml $Et_{2}O$ werden während 45 min 1.2 ml (9.8 mmol) $BF_{3} \cdot OEt_{2}$ in 20 ml $Et_{2}O$ bei Raumtemperatur langsam zugetropft. Es wird 20 h nachgerührt, der Ether im Vakuum entfernt und der Rückstand mit 15 ml n-Pentan gewaschen. Der resultierende Feststoff wird abfiltriert und getrocknet.

Ausbeute: 1.66 g (79% d. Th.). Schmp. (geschlossenes Rohr, unter Ar): $105-107 \,^{\circ} C$ (Zers.). ¹H-NMR (CD₃CN): δ 1.21 (m, CH(CH₃)₂). ¹³C-NMR (CD₃CN): δ 28.0 (CH(CH₃)); 21.9 [CH(CH₃)₂]. ¹⁹F-NMR (THF): δ -151.4 (q, ¹J(BF) = 1.3 Hz). ¹¹B-NMR (THF): δ -0.4. Wichtige Daten aus den IR- und RE-Spektren siehe Tabelle 2. Gef.: C, 22.21; H, 5.17; F, 25.69. C₆H₁₄BF₄In (287.80) Ber.: C, 25.04; H, 4.90; F, 26.40%.

Dank

Unser Dank gilt dem Fonds der Chemischen Industrie für ein Liebig-Stipendium und der Unterstützung mit Sachmitteln, ferner der Firma Hoechst/Knapsack für Chemikalienspenden. Prof. Dr. K. Dehnicke danken wir für seine Unterstützung.

Literatur

- 1 J.J. Eisch, J. Am. Chem. Soc., 84 (1962) 3834.
- 2 H. Schmidbaur, J. Weidlein, H.-F. Klein und K. Eiglmeier, Chem. Ber., 101 (1968) 2268.
- 3 H. Schmidbaur und H.-F. Klein, Chem. Ber., 101 (1968) 2278.
- 4 H. Schmidbaur, H.-F. Klein und K. Eiglmeier, Angew. Chem., 79 (1967) 821.
- 5 H.C. Clark und A.L. Pickard, J. Organomet. Chem., 8 (1967) 427.
- 6 T. Maeda, H. Tada, K. Yasuda und R. Okawara, J. Organomet. Chem., 27 (1971) 13.
- 7 Für eine Übersicht zur Darstellung und Charakterisierung von Organogallium-Verbindungen siehe: Gmelin, Handbook of Inorganic Chemistry, Gallium, Organogallium Compounds, Part 1, Springer Verlag, Berlin, 1987, S. 146.
- 8 A.R. Barron, J. Chem. Soc., Dalton Trans., (1989) 1625.
- 9 B. Neumüller, Z. Anorg. Allg. Chem., 592 (1991) 42.
- 10 J.T. Leman und A.R. Barron, Organometallics, 8 (1989) 2214.
- 11 B. Neumüller, Chem. Ber., 122 (1989) 2283.
- 12 B. Neumüller, Z. Naturforsch. B, 45 (1990) 1559.
- 13 K. Kuhlmann und D.M. Grant, J. Phys. Chem., 68 (1964) 3208.
- 14 H.D. Hausen, K. Mertz, J. Weidlein und W. Schwarz, J. Organomet. Chem., 93 (1975) 291.
- 15 J. Weidlein, U. Müller, und K. Dehnicke, Schwingungsfrequenzen I, Thieme Verlag, Stuttgart, 1981, S. 237.
- 16 D.C. Bradley, D.M. Frigo, M.B. Hursthouse und B. Hussain, Organometallics, 7 (1988) 1112.

- 17 H.D. Hausen, K. Mertz, E. Veigel und J. Weidlein, Z. Anorg. Allg. Chem., 410 (1974) 156.
- 18 H.W.B. Einstein, M.M. Gilbert und D.G. Tuck, J. Chem. Soc., Dalton Trans., (1973) 248.
- 19 H.-D. Hausen, Z. Naturforsch. B, 27 (1972) 82.
- 20 H.-D. Hausen, J. Organomet. Chem., 39 (1972) C37.
- 21 M.F. Hawthorne, J. Org. Chem., 23 (1958) 1579.
- 22 R.T. Hawkins, W.J., W.J. Lennarz und H.R. Snyder, J. Am. Chem. Soc., 82 (1960) 3053.
- 23 S.W. Breuer und F.A. Broster, Tetrahedron Lett., 22 (1972) 2193.
- 24 (C.P. Brock, R.P. Minton und X. Niedenzu, Acta Crystallogr., Sect. C. 43 (1987) 1775.
- 25 R. Boese, M. Polk und D. Bläser, Angew. Chem., 99 (1987) 239; Angew. Chem., Int. Ed. Engl., 26 (1987) 245.
- 26 J.R. Bowser und T.P. Fehlner, in H.W. Roesky (Hrsg.), Rings, Clusters and Polymers of Main Group and Transition Elements, Elsevier, Amsterdam, 1989, S. 1.
- 27 (C.A. Coulson and T.W. Dingle, Acta Crystallogr., Sect. B, 24 (1968) 153.
- 28 L. Pauling, Die Natur der Chemischen Bindung, 3. Aufl., Verlag Chemie, Weinheim, 1976, S. 221.
- 29 Über Boroxine: Gmelin Handbuch der Anorganischen Chemie, Borverbindungen, Teil 13, Bd. 44, IErgänzungswerk zur 8. Aufl., Springer Verlag. Berlin, 1977. S. 179ff.
- 30 M. Yalpani und R. Boese, Chem. Ber., 116 (1983) 3347.
- 31 IL. Santucci und C. Triboulet, J. Chem. Soc. (A), (1969) 392.
- 32 M.J. Aroney, R.J.W. LeFevre, D.S.N. Murthy und J.D. Saxby, J. Chem. Soc. (B), (1966) 1066.
- 33 D.R. Armstrong und P.G. Perkins, J. Chem. Soc. (A), (1967) 790.
- 34 M. Bossa und F. Maraschini, J. Chem. Soc. (A), (1970) 1416.
- 35 International Tables for Crystallography, Bd. A. 2. Aufl., Kluwer Academic Publishers, Dordrecht, 1989.
- 36 G.M. Sheldrick, SHELX-76, SHELX-86, Programs for Crystal Structure Analysis, Cambridge, 1976, Gölüngen, 198b.
- 37 A.L. Spek, PLATON-87, Utrecht, 1987.
- 38 E. Keller, SCHAKAL-86, Freiburg, 1986.
- 39 C.K. Johnson, ORTEP, ORNL-3794, Oak Ridge National Laboratory, Tennessee, 1965.
- 40 D.D. Perrin, W.L.F. Armarego und D.R. Perrin, Purification of Laboratory Chemicals, 2. Aufl., Pergamon Press, Oxford, 1980.
- 41 H. Schmidbaur, in G. Brauer (Hrsg.), Handbuch der präparativen Anorganischen Chemie, Bd. II, 3. Aufl., Enke Verlag, Stuttgart, 1978, S. 867.
- 42 G. Bir, W. Schacht und D. Kaufmann, J. Organomet. Chem., 340 (1988) 267.
- 43 B. Neumüller und F. Gahlmann, in Vorbereitung.